Hardy and Cowling–Price theorems associated with the Jacobi–Cherednik operator

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardy-type inequalities for integral transforms associated with Jacobi operator

We establish Hardy-type inequalities for the Riemann-Liouville and Weyl transforms associated with the Jacobi operator by using Hardy-type inequalities for a class of integral operators.

متن کامل

Operator Valued Hardy Spaces

We give a systematic study on the Hardy spaces of functions with values in the non-commutative L-spaces associated with a semifinite von Neumann algebra M. This is motivated by the works on matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), and on the other hand, by the recent development on the non-commutative martingale inequalities. Our non-com...

متن کامل

The Hardy Operator and Boyd Indices

We give necessary and sufficient conditions for the Hardy operator to be bounded on a rearrangement invariant quasi-Banach space in terms of its Boyd indices. MAIN RESULTS A rearrangement invariant space X on R is a set of measurable functions (modulo functions equal almost everywhere) with a complete quasi-norm ‖ · ‖X such that the following holds: i) if g ≤ f ∗ and f ∈ X, then g ∈ X with ‖g‖X...

متن کامل

Ergodic theorems along sequences and Hardy fields.

Let a(x) be a real function with a regular growth as x --> infinity. [The precise technical assumption is that a(x) belongs to a Hardy field.] We establish sufficient growth conditions on a(x) so that the sequence ([a(n)])(infinity)(n=1) is a good averaging sequence in L2 for the pointwise ergodic theorem. A sequence (an) of positive integers is a good averaging sequence in L2 for the pointwise...

متن کامل

Optimal domain for the Hardy operator

We study the optimal domain for the Hardy operator considered with values in a rearrangement invariant space. In particular, this domain can be represented as the space of integrable functions with respect to a vector measure defined on a δ-ring. A precise description is given for the case of the minimal Lorentz spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin des Sciences Mathématiques

سال: 2014

ISSN: 0007-4497

DOI: 10.1016/j.bulsci.2013.07.004